Telegram Group & Telegram Channel
Рубрика "бла бла бла"

K8S vs Docker

Что может случиться, если в компании принимается решение об единообразной платформе развертывании контейнерных приложений? Например, в компании на высшем уровне договорились развертывать все контейнерные приложения для всех подразделений только на kubernetes. В таком случае будьте готовы, что это решение повлияет на развитии внутренних сервисов компании негативным образом.

Почему? Мощности подразделения DevOps могут быть ограничены, а работать с K8S могут быть подготовлены не все сотрудники. Призыв "А ну-ка изучите kubernetes" у многих может вызывать отторжение, хотя бы потому, что в свободное от работы время учить не хочется дополнительный инструмент, а в рабочее время - аврал и надо бежать делать другие задачи. Лично у меня еще срабатывает желание подтянуть Docker, а не идти еще учить k8s, который еще и сложнее на порядок.

Лучшим на мой взгляд решением является принятие единой технологической платформы только для критически важной инфраструктуры (в т.ч. сервисов, приносящих деньги). А для других подразделений можно предоставить выбор k8s или docker. При этом тем, кто выбрал docker оказывать необходимую поддержку (возможно даже нанять отдельного devops инженера с хорошими знаниями docker).

Такое решение поспособствует развитию локальных экспертиз отдельных команд, плюс развитие внутренних продуктов компании только ускорится. Не каждый сотрудник, изучив Docker готов пойти изучать еще и kubernetes.

---

Как это может повлиять на отдел аналитики? Например, сейчас я бы хотел развернуть в компании Apache Airflow, Apache NiFi и DataHub Project, но все это придется поднимать на kubernetes. Дополнительным условием является поднятие сразу двух сред prod и stage. Т.к. datahub еще состоит из множества сервисов, то связываться с ним devops не захотят. Какой результат? Правильно - никакой. Фактически внутри ИТ приняты договоренности, которые препятствуют развитию инструментария для работы с данными.

Да, можно выпросить Linux машину и все поставить самостоятельно сбоку. Но тогда возникает ситуация, при которой вроде договорились использовать k8s, а все равно сбоку отпочковываются сервисы на Docker. Плюс машины Linux админят разработчики, что не безопасно.

---

Резюмируя, хочу сказать следующее: прежде чем вводить ограничения внутри компании, подумайте стоит ли их распространять повсеместно. В ином случае наймите достаточное количество DevOps инженеров, которые бы делали бы все необходимые работы по k8s.



tg-me.com/python_powerbi/630
Create:
Last Update:

Рубрика "бла бла бла"

K8S vs Docker

Что может случиться, если в компании принимается решение об единообразной платформе развертывании контейнерных приложений? Например, в компании на высшем уровне договорились развертывать все контейнерные приложения для всех подразделений только на kubernetes. В таком случае будьте готовы, что это решение повлияет на развитии внутренних сервисов компании негативным образом.

Почему? Мощности подразделения DevOps могут быть ограничены, а работать с K8S могут быть подготовлены не все сотрудники. Призыв "А ну-ка изучите kubernetes" у многих может вызывать отторжение, хотя бы потому, что в свободное от работы время учить не хочется дополнительный инструмент, а в рабочее время - аврал и надо бежать делать другие задачи. Лично у меня еще срабатывает желание подтянуть Docker, а не идти еще учить k8s, который еще и сложнее на порядок.

Лучшим на мой взгляд решением является принятие единой технологической платформы только для критически важной инфраструктуры (в т.ч. сервисов, приносящих деньги). А для других подразделений можно предоставить выбор k8s или docker. При этом тем, кто выбрал docker оказывать необходимую поддержку (возможно даже нанять отдельного devops инженера с хорошими знаниями docker).

Такое решение поспособствует развитию локальных экспертиз отдельных команд, плюс развитие внутренних продуктов компании только ускорится. Не каждый сотрудник, изучив Docker готов пойти изучать еще и kubernetes.

---

Как это может повлиять на отдел аналитики? Например, сейчас я бы хотел развернуть в компании Apache Airflow, Apache NiFi и DataHub Project, но все это придется поднимать на kubernetes. Дополнительным условием является поднятие сразу двух сред prod и stage. Т.к. datahub еще состоит из множества сервисов, то связываться с ним devops не захотят. Какой результат? Правильно - никакой. Фактически внутри ИТ приняты договоренности, которые препятствуют развитию инструментария для работы с данными.

Да, можно выпросить Linux машину и все поставить самостоятельно сбоку. Но тогда возникает ситуация, при которой вроде договорились использовать k8s, а все равно сбоку отпочковываются сервисы на Docker. Плюс машины Linux админят разработчики, что не безопасно.

---

Резюмируя, хочу сказать следующее: прежде чем вводить ограничения внутри компании, подумайте стоит ли их распространять повсеместно. В ином случае наймите достаточное количество DevOps инженеров, которые бы делали бы все необходимые работы по k8s.

BY Python 🐍 Work With Data


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/python_powerbi/630

View MORE
Open in Telegram


Python Work With Data Telegram | DID YOU KNOW?

Date: |

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Python Work With Data from pl


Telegram Python 🐍 Work With Data
FROM USA